Optimality Theory and Spanish Phonology

Travis G. Bradley*
University of California, Davis

Abstract
This article surveys research in Spanish phonology from the perspective of Optimality Theory, a formal linguistic framework based on ranked and violable constraints. Theoretical insights from OT enrich our understanding of Spanish phonology, and Spanish data also figure prominently in the latest theoretical developments within OT. The article concludes with areas for ongoing research and suggestions for further reading on OT in Spanish phonology.

1. Introduction
Among the languages of the world with at least 50 million first-language speakers, Spanish ranks second with 406 million spread across 31 different countries, just above English and far below Chinese (Lewis 2009). Linguistic theory and Hispanic dialectology have long enjoyed a healthy and symbiotic relationship. Within the context of contemporary research, “the study of Spanish language variation intersects naturally with a broad cross-section of theoretical and experimental linguistics” (Lipski 2008: 216). As a language with rich phonetic and phonological variation across multiple dialects, Spanish continues to be a fertile testing ground for the latest advances in phonological theory.

Since its inception in the early 1990s, Optimality Theory (OT; Prince and Smolensky 1993/2004) has emerged as one of the most influential frameworks in contemporary generative linguistics, especially in phonology. In an OT grammar, underlying forms go through a single mapping to surface forms in accordance with a hierarchy of ranked and violable constraints. These constraints are, by hypothesis, universal but can be ranked differently in different languages. Faithfulness constraints compare input and output forms, or in some versions of OT, two related outputs, and are violated if the corresponding forms are not identical with respect to some specified property. Markedness constraints evaluate individual output forms and are violated if the output is ill-formed in a particular way. Alignment constraints require the left or right edges of morphological and prosodic domains to coincide. For more detailed introductions to OT, see Archangeli and Langendoen (1997), Gordon (2007), Kager (1999), McCarthy (2002, 2007b, 2008), Prince and Smolensky (1993/2004).

2. Contributions of OT to Spanish Phonology
Since the first applications of OT to Spanish syllabification (Morales-Front 1994, Colina 1995), a considerable literature has developed on OT Spanish phonology, including research published in theoretical linguistics journals, in peer-reviewed proceedings from conferences such as the Linguistic Symposium on Romance Languages, the Hispanic Linguistics Symposium, and Going Romance, and in edited volumes (e.g. Martínez-Gil and Morales-Front 1997, Martínez-Gil and Colina 2006, Núñez Cedeño and Morales-Front 1999, Núñez Cedeño,

2.1. THE PLOSIVE-APPROXIMANT ALTERNATION

The realization of voiced obstruents /bd̪g/ in Spanish is a staple problem set in introductory phonology. Although there is some dialectal and stylistic variation, the basic pattern is one of complementary distribution between two sets of allophones: plosives [bd̪g] appear after a pause, after nasals, and in the case of [d̪] after a lateral, while approximants [βðɣ] appear elsewhere. The examples in (1) illustrate the allophonic difference between [d̪] and [ð]:

(1) a. ||d̪a.me.lo Dámelo! ‘Give it to me!’
 b. ||me.lo.ða Me lo da. ‘S/he gives it to me.’

In the generative literature on Spanish voiced obstruents, much of the debate has centered on the nature of underlying representations and the directionality of the phonological change as one of lenition or fortition. Early generative accounts (e.g. Harris 1969) treat the plosives as underlying and derive the surface approximants by a spirantization rule that changes the feature [−continuant] to [+continuant] in the appropriate contexts. Lozano (1979) proposes that the underlying segments lack any specification for continuancy. Subsequent non-linear analyses (e.g. Harris 1984, Hualde 1989a) posit archiphonemic /BDG/, underspecified for the feature [continuant], and derive the surface distribution of continuancy by autosegmental spreading and default assignment rules. Barlow (2003b) argues in favor of a fortition account that assumes underlying approximants.

OT contributes to the analysis of Spanish voiced obstruents by ruling out feature underspecification as a source of explanation and by shifting the focus away from underlying representations and onto constraint interaction. A basic tenet of OT is richness of the base, which states that there are no language-specific constraints on the input representation (McCarthy 2002: 71–6, Prince and Smolensky 1992/2004: 205, 225). Systematic differences across languages must be accounted for by interacting constraints in the grammar. As pointed out by Kirchner (1998/2001), underlying values of [continuant] become irrelevant in an OT analysis of lenition and fortition because the surface distribution of feature values is determined entirely by constraint interaction (see also Baković 1994). For example, the complementary distribution in (1) requires that faithfulness to the feature [continuant] rank below a context-free markedness constraint against voiced plosives, represented here as *VOIPLOS, which in turn must rank below a positional markedness constraint against voiced approximants in postpausal contexts, *VOIAPPROX/|_|. A complete account would require additional *VOIAPPROX constraints, omitted here for reasons of space.

Tableau (2) gives two evaluations for the phrase Dámelo, the first with an input plosive /d̪/ and the second with an input approximant /ð/. High-ranking *VOIAPPROX/|_| rules out the input–output mappings in (2b,d), in which the output forms contain a voiced approximant in postpausal position. The outputs in (2a,c) contain voiced plosives, violating *VOIPLOS, but the plosive allophones are tolerated because it is more important to avoid approximants in this particular context. The constraint hierarchy ensures a plosive in the output, regardless of whether the input contains a plosive (2a) or an approximant (2c).
(2) Voiced plosive after a pause

<table>
<thead>
<tr>
<th></th>
<th>*VoIApP</th>
<th>*VoIPlos</th>
<th>Faith(cont)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. /da+me+lo/ →</td>
<td>da.me.lo</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. /da+me+lo/ →</td>
<td>da.me.lo</td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>c. /da+me+lo/ →</td>
<td>da.me.lo</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>d. /da+me+lo/ →</td>
<td>da.me.lo</td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

In the evaluations of *Me lo da* in tableau (3), *VoIApP* is now irrelevant because [ð̞] does not appear in postpausal position. The decision is passed down to *VoIPlos*, which favors an approximant in the output, regardless of whether the input contains a plosive (3b) or an approximant (3d).

(3) Voiced approximant after a vowel

<table>
<thead>
<tr>
<th></th>
<th>*VoIApP</th>
<th>*VoIPlos</th>
<th>Faith(cont)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. /me+lo+da/ →</td>
<td>me.lo.da</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>b. me.lo.da</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. /me+lo+da/ →</td>
<td>me.lo.da</td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>d. me.lo.da</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since faithfulness is lowest ranked, surface contrasts between [bdg] and [βðɣ] are impossible. Assuming richness of the base, the question of which allophone to choose as underlying becomes a non-issue (Kirchner 2001: 74). The correct surface patterns are optimized by the constraint hierarchy regardless of whether the input contains plosives or approximants.

2.2. THE ONSET CONSPIRACY IN SYLLABIFICATION

A well-known generalization about Spanish syllable structure is that prevocalic glides syllabify as onsets when no preceding consonant is available (4a) but as part of the syllable nucleus after a consonantal onset (4b) (Harris 1983, Harris and Kaisse 1999, Hualde 1989b, 1991).

(4) a. [G[V]N]₀
 b. [C[GV]N]₀

This difference is supported by patterns of glide fortition. In many dialects, glides are strengthened to obstruents in syllable-initial position (5a) but not after a preceding onset (5b).

(5) a. kɾe.jo > kɾe.ɾo, kɾe.ɾo, kɾe.ɾo, kɾe.ɾo creyó ‘he/she/it believed’
 we.so > ɣwε.so hueso ‘bone’
 kɾe.ɾo, kɾe.ɾo, kɾe.ɾo, kɾe.ɾo creció ‘he/she/it grew’
 pwep.ɾe, pwep.ɾe, pwep.ɾe puente ‘bridge’

Colina (2006c, 2009b) shows that in OT, the behavior of prevocalic glides can be understood in terms of a Spanish-specific ranking of universal constraints on sonority and syllable structure. Languages are known to differ in the types of segments they
allow in different positions within the syllable, in accordance with a scale of sonority, i.e. loudness in acoustic terms. One of the sonority scales proposed in the literature on Spanish is shown in (6), where segment classes to the left are less sonorous than those to the right.¹

(6) Spanish sonority scale (Martínez-Gil 1996, 1997)

Stops < Fricatives < Nasals < Liquids < Glides < Vowels

Two important cross-linguistic generalizations are that less sonorous segments are preferred in the onset, while more sonorous segments are preferred in the nucleus. Drawing upon work by Prince and Smolensky (1993/2004), Colina (2006c: 180, 2009b: 20) formalizes these implicational generalizations as fixed rankings of markedness constraints, shown in (7), where stops and fricatives are grouped together as obstruents.

(7) a. *ONS/VOWEL » *ONS/GLIDE » *ONS/LIQUID » *ONS/NASAL » *ONS/OBSTRUENT
b. *NUC/OBSTRUENT » *NUC/NASAL » *NUC/LIQUID » *NUC/GLIDE » *NUC/VOWEL

These hierarchies encode the preference for less sonorous segments to syllabify as onsets and for more sonorous segments to syllabify as nuclei. *ONS/GLIDE and *NUC/GLIDE are relevant to the analysis of Spanish prevocalic glides, as well as a markedness constraint against onsetless syllables, ONSET (Itô 1989, Prince and Smolensky 1993/2004). The analysis also assumes a faithfulness constraint on the feature [consonantal], which distinguishes vowels and glides from consonants.

Tableau (8) gives the analysis of complex nucleus formation in the example creció. Given the input /kɾes + io/, the output candidates show three different syllabifications of the final /io/ sequence, where the relevant syllable nuclei are enclosed within brackets. The hiatus in (8b) leaves the final syllable without an onset consonant, violating ONSET, while (8c) syllabifies the glide as part of a complex onset, violating ONS/GLIDE. The optimal syllabification, as predicted by the low ranking of NUC/GLIDE, parses the glide and the following vowel together in a complex nucleus in (8a).

(8) Prevoical glide as part of a complex nucleus

<table>
<thead>
<tr>
<th>/kɾes+io/</th>
<th>ONSET ; *ONS/GLIDE</th>
<th>*NUC/GLIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. kɾe.s[jo]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. kɾe.s[i].[o]</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c. kɾe.sj[o]</td>
<td></td>
<td>*!</td>
</tr>
</tbody>
</table>

Tableau (9) presents the analysis of syllable-initial glide strengthening in the example creyó. High-ranking ONSET rules out (9a,b) because they contain onsetless syllables, and *ONS/GLIDE rules out (9c) because a glide is syllabified in onset position. The optimal candidate is (9d), in which the input vowel /i/ is strengthened to [ʝ], violating the low-ranking faithfulness constraint.²

(9) Strengthened glide as a syllable onset

<table>
<thead>
<tr>
<th>/kɾe+i.o/</th>
<th>ONSET ; *ONS/GLIDE</th>
<th>*NUC/GLIDE</th>
<th>FAITH(cons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. kɾe.[jo]</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. kɾe.[i].[o]</td>
<td>!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. kɾe.j[o]</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d. kɾe.j[o]</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Derivational accounts of word-level syllabification in Spanish (e.g. Hualde 1989b, 1991) typically include language-specific rules that stipulate vowels as the heads of syllables, as well as additional syllabification rules subject to constraints that make indirect reference to the sonority scale. By contrast, OT is able to build sonority directly into the analysis using universal markedness constraints. Furthermore, in rule-based accounts of onset strengthening (e.g. Hualde 1991), it is unclear whether glides become obstruents after being resyllabified to the syllable onset or whether glides are resyllabified as onsets after becoming obstruents, which cannot occupy the syllable nucleus. This indeterminacy is avoided in an OT account. Since the optimal syllabification of glides is determined by comparing output candidates in parallel against a hierarchy of ranked and violable constraints, the question of which rule precedes the other in a serial derivation is no longer an issue.

The ONSET constraint also plays a key role in Spanish phonology at the phrase level. High vowels become glides when they are adjacent to another vowel across the word boundary (10a). A separate process resyllabifies a word-final consonant to the following onset before a vowel-initial word (10b). However, if the following word already begins with a consonant, then resyllabification does not occur (11a), even when the complex onset that would result from resyllabification is otherwise preferred word-internally (11b).

(10) a. mja.mi.ɣo mi amigo ‘my friend’
 b. tu.sa.mi.ɣo tus amig...os ‘your friends’

(11) a. kluβ.λi...n.do club lindo ‘pretty club’
 b. aβ.λa.mos hablamos ‘we talk’

Although gliding and resyllabification seem to be independent and formally unrelated processes, both rules actually achieve the same result: the avoidance of an onsetless syllable. A main advantage of OT over rule-based phonology is its explanation of rule conspiracies (Kisseberth 1970), whereby some languages have multiple rules that seem to conspire together toward a common goal, i.e. avoiding a marked structure in the output. By distinguishing between the structural problem and the various strategies for repairing the problem, OT can reveal the functional unity of what appears to be separate rules of the language.

Colina (2006c: 191–195, 2009b: 45–53) shows that OT explains the conspiracy of gliding and resyllabification as an effect of ONSET. This constraint outranks a faithfulness constraint, represented here as FAITH(V → G), which is violated when an input vowel changes to a glide in the output. ONSET also outranks an alignment constraint, ALIGN-L(STEM, σ), which requires the left edge of a stem to coincide with the left edge of a syllable in the output. Alignment is violated whenever the initial segment of a stem is not also the initial segment of a syllable.

The tableaux in (12) show how a single constraint ranking captures the true motivation behind gliding and resyllabification while at the same time limiting the latter process to affect only prevocalic consonants. Candidates (12a,c) violate high-ranking ONSET because the initial syllable of amigo(s) lacks an onset. Candidates (12b,d,f) violate alignment because the left edge of the stem, denoted by a vertical line, does not coincide with the left edge of a syllable. Candidate (12b) also violates faithfulness for the change from input vowel to output glide. The violations incurred by (12b,d) are tolerated because Spanish places greater importance on avoiding onsetless syllables than on maintaining stem-syllable alignment or faithfulness to input vowels. In the case of club lindo, word-initial /l/ is already available to satisfy ONSET, so lower-ranking ALIGN-L(STEM, σ) keeps word-final /b/ in the coda to maintain stem-syllable alignment in (12e).
Conspiracy of gliding and resyllabification to avoid onsetless syllables

<table>
<thead>
<tr>
<th></th>
<th>Onset</th>
<th>FAITH(V→G)</th>
<th>ALIGN-L(STEM,σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. /mi amigο/ → mi.</td>
<td>a.mi.γο</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>b. mjia.mi.γο</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. /tus amigos/ → τus.</td>
<td>a.mi.yos</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d. τus/a.mi.yos</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. /klub linγο/ → kluβ.</td>
<td>liŋ.γο</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>f. klu.β</td>
<td>liŋ.γο</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Working in a derivational framework, Hualde (1991) accounts for resyllabification by positing a CV rule that applies both lexically and postlexically. However, he must restrict the application of a complex onset rule to the lexical level only in order to avoid syllabifications such as *[klu.β|liŋ.γο]. This stipulation is avoided in an OT analysis. Since the syllable onset can already be filled by the stem-initial lateral, moving word-final [β] into onset position amounts to an unnecessary violation of alignment.

2.3. STRESS

In Spanish non-verbs, primary stress can appear on one of the last three syllables of a word. Penultimate stress is the unmarked pattern for vowel-final words (13a), whereas words ending in a consonant prefer final stress (14a). For vowel-final words, antepenultimate stress is the marked pattern (13b), and final stress is supermarked (13c). For consonant-final words, penultimate stress is marked (14b), and antepenultimate stress is supermarked (14c).

(13) a. pιs.|tό.|a πιστό.|a ‘pistol’
 b. e.пιs.|tό.|a епιστό.|a ‘epistle’
 c. menú | menú ‘menu’

(14) a. a.nι.|mάλ animal ‘animal’
 b. ka.|нι.|βα|λ κανιβα|λ ‘cannibal’
 c. i.pέ|βα|τόн hipéρβα|τόν ‘hyperbaton’

As Roca (2006: 242–243) points out, these markedness differences are supported by empirical evidence including lexical frequency counts and the pronunciation of acronyms and nonce words. Roca argues that once a morphological distinction is recognized between the stem and class marker, or desinence in Roca’s terminology, the markedness relations become more transparent. Class markers are word-final inflectional suffixes and are always unstressed, with -ο, -α, -ε being the most common. In the reorganized presentation of examples in (15), both the position and markedness of stress are indicated relative to its position within the stem, whose right edge is denoted by a vertical line.
Roca (2006: 245–248) develops an OT account of unmarked stem-final stress in (15c) using the following constraints on metrical structure: feet are left headed (TROCHEE), the right edge of any foot coincides with the right edge of the stem (ALIGN-R(FOOT, STEM)), and the stressed vowel is last in the stem (ALIGN-R(V, STEM)). In Spanish, these three constraints outrank the constraint requiring all syllables to be parsed into feet (PARSEσ). As tableau (16) shows, the result of this ranking is the creation of a degenerate (non-binary) foot whose right edge is aligned with the rightmost vowel of the stem in (16a,e,i).

(16) Unmarked stress on the final vowel of the stem

<table>
<thead>
<tr>
<th></th>
<th>TROCHEE</th>
<th>ALIGN-R(FOOT,STEM)</th>
<th>ALIGN-R(V,STEM)</th>
<th>PARSEσ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>b.</td>
<td>(pis.tó.l)a</td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>c.</td>
<td>(pis.tó.l)a</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>d.</td>
<td>pis.(tó.l)a</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>e.</td>
<td>a.ni.(má)l</td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>f.</td>
<td>a.(ni.m ál)</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>g.</td>
<td>a.(ni.má)l</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>h.</td>
<td>a.(ni.m ál)</td>
<td>*!</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>i.</td>
<td>me.(nú)</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>j.</td>
<td>(mé.n ú)</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>k.</td>
<td>(me.n ú)</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To account for the marked patterns involving penultimate stress within the stem, Roca (2006: 247) invokes a lexically indexed constraint requiring feet to contain minimally two syllables (FTBIN**MIN*). Crucially, this constraint is bound to the lexical class of words behaving like those in (15b), which cannot be predicted in a principled manner. In tableau (17), the asterisk in the input activates FTBIN**MIN* for these words, ruling out the degenerate foot in (17e) in favor of the binary foot in (17d). FTBIN**MIN* and ALIGN-R(FOOT, STEM) rule out the degenerate foot in (17b) and the binary foot in (17c), respectively, in favor of the binary foot in (17a). The effect of the ranking illustrated in tableau (17) is the creation of a binary foot whose right edge is aligned with the rightmost vowel of the stem.
(17) Marked stress on the penultimate vowel of the stem

<table>
<thead>
<tr>
<th>*</th>
<th>TROCHEE</th>
<th>FtBin*Min*</th>
<th>ALIGN-R (Foot,STEM)</th>
<th>ALIGN-R (V,STEM)</th>
<th>PARSEσ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>e.(pis.to).</td>
<td>a</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td>e.pis.(tó).</td>
<td>a</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>e.pis.(tó.1a)</td>
<td>*!</td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>d.</td>
<td>ka.(níbal)</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>e.</td>
<td>ka.ni.(bál)</td>
<td>*!</td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

Cases of supermarked stress as in (15a) require an additional lexically indexed constraint that gives preference to feet that are not word-final. This constraint rules out a candidate such as i.per.(βá.τo)n |, with a word-final binary foot, in favor of i.(pér.βa).τo n |, in which the foot is both binary and non-final.

Although some of their constraints and representations differ from those assumed by Roca (2006), Lleó and Arias (2006) propose an OT analysis of stress patterns from Spanish first-language acquisition. They show how stages in the acquisition of stress are accounted for in terms of different rankings of the same set of universal constraints, which provides a simpler account of developmental stress patterns than do parametric rule-based frameworks. They also present evidence in favor of the syllabic trochee as the unmarked foot pattern in Spanish, which agrees with Roca’s use of the TROCHEE constraint.

2.4. THE INTERFACE OF MORPHOLOGY AND PHONOLOGY IN /s/-ASPIRATION

Another staple topic in Spanish phonology is /s/-aspiration, whereby /s/ is realized as the glottal fricative [h] in coda position (18a). In some dialects, this rule shows evidence of opacity in prevocalic contexts, where the relevant segment is no longer in the syllable coda due to resyllabification. Rule-based accounts (e.g. Hualde 1989b, 1991) view this opacity as evidence that morphological operations interact with rules of syllabification and /s/-aspiration at different levels within the derivation. For speakers who pronounce prefix-final /s/ as [h] before vowels (18b), aspiration applies at Level 1 in the lexical component after suffixation and syllabification, when /s/ is still in the coda. Prefixation and resyllabification at Level 2 then move [h] into the following onset. For speakers who maintain prefix-final /s/ as [s] before vowels (18c), aspiration applies at Level 2 after prefixation and resyllabification. Since /s/ is already in the onset, it is unaffected by the coda aspiration rule. Speakers of both varieties also aspirate word-final prevocalic /s/ (18d) because coda aspiration at either Level 1 or 2 in the lexical component necessarily targets word-final /s/, and resyllabification in the postlexical component then moves [h] into the following onset. Rule ordering makes it possible to account for the overapplication of coda /s/-aspiration and provides strong evidence in favor of rules, derivations, and ordered levels.

(18) a. /des+ta.par/ /mes/ [deh.ta.par] destapar ‘to uncover’
 /mes/ [meh] mes ‘month’
 b. /des + etʃo/ [de.he.ʃo] deshecho ‘undone’
 c. /des + etʃo/ [de.se.ʃo] mes azul ‘blue month’
 d. /mes asul/ [me.ha.sul] mes azul ‘blue month’
In OT, the opacity of /s/-aspiration can be explained in a parallel, constraint-based model without intermediate derivational steps or ordered levels (Baković 1998, Colina 2002, 2009b: 77–86, Kenstowicz 1997, Wiltshire 2006). In its original conception, faithfulness in OT involves a comparison of corresponding input and output forms. One subtheory within OT is output–output (OO) faithfulness, which extends the notion of correspondence to include related output forms, e.g. a base and a reduplicant, a base and a morphologically-derived form, the isolation and phrasal forms of a word, etc. (Benua 1995, 1997/2000, McCarthy and Prince 1995, Kenstowicz 1997).

Crucial to Colina’s analysis of opaque /s/-aspiration is an OO-faithfulness constraint, IDENTITY-PRWD, which requires that “prosodic words have only one output form in all contexts” (Colina 2009b: 78). A markedness constraint against coda [s] favors aspiration in syllable-final contexts (18a). For speakers who aspirate word-final prevocalic /s/ (18d), IDENTITY-PRWD is ranked high enough to favor aspiration in prevocalic contexts. Variation in the realization of prefix-final segments is accounted for by a difference in the prosodic representation of prefixes. Speakers who aspirate prefix-final /s/ before vowels (18b) adjoin prefixes to the prosodic word, which creates a recursive PrWd category and allows IDENTITY-PRWD to favor aspiration. Speakers who maintain prefix-final /s/ before vowels (18c) incorporate prefixes directly into the PrWd, where onset [s] is the optimal realization.4

A key advantage of the OO-faithfulness analysis is that it explains why variation is observed with respect to prefixation (and compounding) but never suffixation, e.g. meses [me.seh], *[me.heh] ‘months’. A rule-based account must stipulate that the domain of syllabification is smaller than the word, excluding prefixes but including suffixes, to ensure that coda aspiration does not apply to stems. In Colina’s analysis, the failure of aspiration in stem-final prevocalic contexts is explained by the fact that suffixes are never adjoined to the prosodic word and, therefore, fall outside the purview of IDENTITY-PRWD.

For an overview of other aspects of Spanish morphophonology, including many analyses couched within OT, see Colina (2011).

3. Contributions of Spanish Phonology to OT

While insights from OT have shed light on the nature of Spanish phonology, crucial data from Spanish varieties have also contributed to the development of models and subtheories within OT. This section examines two examples from the literature on Spanish rhotics.

3.1. Dispersion Theory

Spanish has two rhotic segments, the tap /ɾ/ and trill /r/, which are phonologically contrastive only in word-medial intervocalic position (19a). Only the trill appears in other syllable-initial contexts, after coda consonants (19b) and word-initially (19c). The tap appears in complex onsets (19d), and there is stylistic and dialectal variations between the tap and trill in coda position (19e).

(19) a. ka.ro ka.ro
 caro ‘expensive’
 karro ‘car’

b. on.ra
al.re.ðe.ðor
 suβ.ра.jar
 suβa.jar
 honra
 alrededor
 subayar
 ‘to underscore’
 ‘around’
 ‘rose’

c. ro.sa
 rosa
 ‘rose’

d. pfe.sjo
 precio
 ‘price’

e. par.ɾe~par.ɾe
 parte
 ‘part’
The most widely accepted rule-based analysis (Harris 1983, 2001, 2002, Núñez Cedeño 1994) treats the intervocalic trill as an underlying geminate tap and derives all surface trills from underlying taps by a series of rules. The main argument for the geminate representation is that it explains why the rhotic contrast is limited to intervocalic position, since this is the only context where /ɾɾ/ can be properly syllabified. In the derivation of *carro*, underlying /kaɾɾo/ is first syllabified as kaɾ.o, the second tap becomes a trill by a rule of postconsonantal strengthening, and the first tap is deleted, leaving [kaɾo] as the surface representation. One argument against the geminate representation is that Spanish otherwise lacks a phonological length distinction between singleton and geminate segments within the morpheme. Another drawback is that separate rules are needed to account for syllable-initial strengthening in postconsonantal (19b) and word-initial (19c) positions. Harris (2002) acknowledges that “the disjunction reflects the difficulty of stating formally the generalization that [ɾ] is obligatory in syllable-initial position except after a vowel” (84–5) and accepts the disjunction as a mere “idiosyncratic wrinkle” (105) in the phonological grammar of Spanish. For an overview of arguments for and against the geminate representation, see Baković (2009) and Bradley (2006d).

Following similar work on Catalan by Padgett (2003b/2009), Bradley (2006d) proposes a constraint-based account of Spanish syllable-initial rhotics that avoids these drawbacks and provides further evidence for perceptual constraints in phonology. Both Padgett and Bradley couch their analyses within Dispersion Theory (DT; Flemming 1995/2002, Padgett 2003a, 2003c), a version of OT that uses perceptually-based constraints on contrast. In standard OT, single input–output mappings are evaluated to optimize single words as outputs. In DT, contrast is a systemic notion requiring evaluation not of isolated forms but of the larger system of contrasts in which those forms exist. An important type of DT constraint is systemic markedness, which seeks to maximize the perceptual distinctiveness of surface contrasts. In the DT analysis of rhotics, a systemic markedness constraint requires words that differ in tap versus trill to differ at least as much as the rhotics do when they appear between vowels. This constraint, represented here as SPACE(R/V_V), formalizes the hypothesis that duration-based contrasts are best perceived in intervocalic position. An additional constraint, _σ[r_, accounts for the preference of the trill, a perceptually salient segment, to appear in a phonologically strong position, the syllable onset. Both SPACE(R/V_V) and _σ[r are perceptually-based constraints, but only the former is systemic, evaluating potentially contrasting output words.

In tableau (20), the input contains two words that form a minimal pair, *caro* versus *carro*, and subscripts are used to show whether the contrast is maintained or neutralized in the output. The intervocalic contrast in (20a) satisfies high-ranking SPACE(R/V_V), and faithfulness rules out neutralization in (20b,c).

(20) Maintenance of rhotic contrast in word-medial intervocalic position

<table>
<thead>
<tr>
<th></th>
<th>SPACE(R/V_V)</th>
<th>FAITH(R)</th>
<th>_σ[r</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>kaɾ.o₁</td>
<td>karo₂</td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td>kaɾ.o₁₂</td>
<td></td>
<td>*₁</td>
</tr>
<tr>
<td>c.</td>
<td>karo₁₂</td>
<td></td>
<td>*₁</td>
</tr>
</tbody>
</table>

The tableaux in (21) give the analysis of syllable-initial trills in non-intervocalic contexts, as in *honra* and *rosa*. Candidates (21a,d) fatally violate SPACE(R/V_V) because they attempt a contrast outside of the perceptually optimal intervocalic position. The neutralization candidates are tied on faithfulness, so the decision is passed to lower-ranking _σ[r, which favors neutralization to the syllable-initial trill in (21c,f).
(21) Neutralization to syllable-initial trill in non-intervocalic position

<table>
<thead>
<tr>
<th>/onfa₁ onra₂/</th>
<th>SPACE(R/V_V)</th>
<th>FAITH(R)</th>
<th>"r"</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. on.fa₁ on.ra₂</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. on.ra₁₂</td>
<td>*</td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>c. on.ra₁₂</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/rosa₁ rosa₂/</th>
<th>SPACE(R/V_V)</th>
<th>FAITH(R)</th>
<th>"r"</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. ro.sa₁ ro.sa₂</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>e. ro.sa₁₂</td>
<td>*</td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>f. ro.sa₁₂</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the DT analysis, \(\text{SPACE}(R/V_V) \) explains why the rhotic contrast is limited to intervocalic position, without having to posit a geminate representation for a language that otherwise lacks morpheme-internal geminates. In any event, richness of the base requires an OT analysis to consider non-geminate /r/ as a possible input segment. Another advantage is that the DT analysis better explains the generalization that syllable-initial rhotics are trills except after a vowel, where trills contrast with taps. The unmarked preference for trills is expressed by a single constraint, \(\sigma[r] \), whereas a rule-based analysis must posit separate rules for postconsonantal and word-initial contexts. More recently, Colina (2009b:89–95, 2010) offers a two-phoneme account of Spanish rhotics couched within standard OT, without perceptually-based constraints. She argues for a diachronic explanation of the intervocalic contrast, whereby the Latin geminate tap evolved into a singleton trill when Spanish lost geminates. Her analysis uses two separate constraints to get word-initial and postconsonantal trills, analogously to Harris (1983, 2001, 2002). The advantage of the DT analysis is that both contexts are unified under a single markedness constraint.

3.2. GESTURAL OT

In Spanish, a vocalic fragment, or intrusive vowel, of variable duration appears between the tap /ɾ/ and an adjacent consonant (22a) but is not found with other consonants, such as laterals (22b). The transcriptions in (22a) are more narrow than those in (19d,e), which omit the intrusive vowel.

(22) a. pʰɾ̥εsə́jo ~ pɛɾ̥εsjo | precio | ‘price’
pár̥t̥ɛ̆ ~ pəɾ̥aɾ̥t̥e | parte | ‘part’
b. plát̥a | plata | ‘silver’
álma | alma | ‘soul’

While intrusive vowels in Spanish appear only with /ɾ/, languages vary with respect to the consonants that trigger vowel intrusion. A cross-linguistic survey by Hall (2003) reveals the implicational hierarchy shown in (23), whereby vowel intrusion is observed more often with liquids than with other sonorants, and more often with rhotics than laterals, except the alveolar trill. In a given language, if a particular class of consonants triggers vowel intrusion in clusters, then so do all classes to the right.

(23) Vowel intrusion triggers (Hall 2003: 28)

- obstruents, if ever > other approximants, nasals > [ɾ] > [l] > [r], [ʁ] > gutturals
- Among nasals: m > n

Research on vowel intrusion has contributed to the development of models that combine OT with the gestural representations of Articulatory Phonology (AP; Browman and...
Goldstein 1989, 1990). See Hall (2010) for an overview of AP. For early work on gestural OT in languages other than Spanish, see Bradley (2002, 2007c), Cho (1998), Davidson (2003), Gafos (2002), Hall (2003). In AP, the grammar is assumed to operate on abstract articulatory gestures, which are dynamically defined in both space and time to produce a constriction in the vocal tract. Gafos (2002) proposes that OT alignment constraints can make reference to gestural landmarks, shown in (24a), and that cross-linguistic differences in articulatory timing can be formalized as constraint interaction. For example, languages with close transition between adjacent consonants give priority to a constraint that aligns the release of the oral gesture of C₁ with the target of the oral gesture of C₂, as in (24b). Languages with open transition favor lesser degrees of gestural overlap, as in (24c), where the offset of C₁ is aligned with the onset of C₂.

(24) a. Gestural landmarks
 target center release
 onset
 offset
 C₁ release = C₂ target
 C₁ offset = C₂ onset

b. Close transition

c. Open transition

AP provides an explanatory phonetic account of vowel intrusion, in which an overlapping vowel gesture is heard during the open transition between two consonants (Bradley 1999, Hall 2003, 2006, Steriade 1990). In Bradley’s (2006c) analysis of Spanish complex onsets, the typology in (23) is formalized as a universal ranking of alignment constraints favoring open transition in [CC] clusters, with each constraint relativized to a different consonant class. An alignment constraint favoring close transition ranks below the constraint that favors open transition in [Cr] but above the constraint that favors open transition in [Cl]. In tableau (25), output candidates pair different gestural alignments in /CCV/ demisyllables with the percepts they give rise to. The ranking ensures open transition with vowel intrusion in (25a) but close transition without vowel intrusion in (25d). The variability of intrusive vowel duration suggests that gestural alignment constraints might specify a range of landmarks, allowing for gradient coordination. See Bradley (2006c) for a more complete account of phonetic variation in /Cr/ clusters across Spanish dialects, including the asibilation and devoicing of /ɾ/ and the retraction of preceding dental stops.

(25) Open transition and vowel intrusion in /pɾ/ onsets versus close transition in /pl/6

<table>
<thead>
<tr>
<th></th>
<th>ALIGN (C₁ OFFSET, /l/, ONSET)</th>
<th>ALIGN (C₁, RELEASE, C₂, TARGET)</th>
<th>ALIGN (C₁ OFFSET, /l/, ONSET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
One argument for representing vowel intrusion as an effect of gestural alignment instead of phonological vowel epenthesis is that intrusive vowels are invisible to phonological processes that count segments (Hall 2003, 2006; cf. Colantoni and Steele 2007, who propose an OT analysis treating intrusive vowels as epenthetic segments). For example, if the intrusive vowel appearing in the /Cɾ/ clusters of Spanish proparoxytones such as kilómetro ‘kilometer’ and democrata ‘democrat’ were to create a new syllable, then stress would fall outside the three-syllable window: *[ki.ło.me.tɾo], *[de.mó.ka.ɾa.ta] (Bradley 2006c: 30). If the intrusive vowel is instead the result of non-overlapping consonant gestures, then it lacks segmental status and is predicted to be invisible to the constraints that govern stress placement. The Spanish data, therefore, support a unified model of phonology in which both gestures and segments coexist in the same representation but are governed by different alignment constraints (Hall 2003).

4. Areas for Ongoing Research

4.1. Derivational Versions of OT

In the original formulation of OT, the Generator (GEN) is free to produce any number of modifications of the input form, including none at all, and the Evaluator (EVAL) determines which output form is optimal depending on the ranking of constraints. Conventional OT assumes a parallel model in which underlying forms are mapped to surface forms in a single pass through GEN and EVAL without intermediate derivational steps. Derivational versions of OT assume a series of input–output mappings, produced either by constraint hierarchies organized in different strata or by multiple passes through GEN and EVAL. In Stratal OT (Bermúdez-Otero 1999, 2003, 2006, Kiparsky 2000, 2003), morphosyntactic domains invoke separate constraint rankings, with the output of one ranking serving as input to the next. Other researchers combine DT constraints with a distinction between lexical and postlexical strata (Bradley 2005a, Bradley and Delforge 2006, Padgett 2003b/2009). OT with candidate chains (OT-CC; McCarthy 2007a) is a derivational model in which inputs and outputs are connected by a chain of intermediate forms, with chains competing against each other as candidates in EVAL. In Harmonic Serialism (HS; McCarthy 2010), input–output mappings involve multiple passes through the GEN-EVAL loop. The implications of OT-CC and HS for Spanish phonology remain largely unexplored, although see Cabrera-Callís, Pons-Moll, and Torres-Tamarit (2010) and Torres-Tamarit, Pons-Moll, and Cabrera-Callís (2012) for an HS analysis of rhotic metathesis in Catalan, a language closely related to Spanish.

4.2. Variation and Frequency Effects in OT

A basic OT analysis involves selecting the best output candidate from a set of competitors, yet natural human language typically shows variability as a function of sociolinguistic, stylistic, and/or usage-based factors such as frequency. Formal analyses and usage-based accounts are often seen as incompatible in the literature, but there is a growing body of research that explores ways of incorporating variation and frequency effects into formal phonological analysis (Boersma and Hayes 2001, Coetzee 2009). In a viewpoint paper on the role of variation in mental grammars, Colina (2008) stresses the need for a greater alliance between variationist and OT approaches. Relatively few OT analyses of Spanish (Díaz-Campos and Colina 2006, Gabriel 2010, Holt 2004, Morris 1998) have attempted to formalize phonological variation, so further research is clearly called for.
It is not uncommon to find analyses in the generative literature based on impressionistic and/or introspective data or on phonetic or dictionary transcriptions. The contemporary research approach known as laboratory phonology (LabPhon) emphasizes the use of experimental methodologies to reevaluate phonological descriptions of impressionistic and introspective data and to question the psychological reality of generalizations made on the basis of such data (Bradley 2014, Cohn 2010, Kawahara 2011). Achieving descriptive adequacy is an important goal for any linguistic framework, including OT. Future experimental work should empirically investigate the data used and the claims made by many analysts of Spanish phonology working within OT. In turn, future OT studies ideally should be informed by rigorous, empirically-based investigations backed up by experimental data.

Recent LabPhon work has revealed the non-categorical nature of Spanish spirantization, in which allophones vary gradually along a continuum of constriction degrees and as a function of vowel context and stress (Cole, Iskarous, and Hualde 1999, Hualde, Simonet, and Nadeu 2011, Ortega-Llebaria 2004). These findings challenge an OT analysis such as the one illustrated in Section 2.1, which assumes a complementary distribution between two basic allophones. One implication is that the analysis needs to allow for greater degrees of phonetic detail in the representation of continuancy. See Kirchner (1998/2001) on the role of gradient phonetic representations and effort reduction constraints in an OT approach to lenition, and Piñeros (2002) for a phonetically-based OT account of Spanish voiced obstruents.

Other LabPhon work has reconsidered the psychological reality of generative accounts of Spanish stress assignment and quantity sensitivity (Alvord 2003, Bárányi 2002, Eddington 2004, Face 2000, 2003). The emerging consensus is that stress is computed not by generative rules or constraints but by analogy with similar forms stored in the lexicon. One argument against a lexicalist approach comes from Lleó and Arias (2006), who point out that children acquiring Spanish as a first language make errors in stress placement whereby the trochaic foot pattern is overgeneralized to some iambic-shaped words. “A lexical approach fails to account for the occurrence of systematic stress errors or, in more general terms, deviations of the target adult pattern, since it renders it virtually impossible to learn a lexical entry without its correct stress specification” (Lleó and Arias 2006: 491). Instead, they interpret stress errors as overgeneralizations of an OT algorithm for stress assignment that favors the syllabic trochee as the unmarked prosodic pattern.

An important goal of research in OT phonology is to figure out what the constraints on human sound systems are and where they come from. Markedness constraints are commonly assumed to be part of our innate genetic endowment, but another possibility is that we learn them from experience on the basis of linguistic input. Whatever their source, the constraints employed in an OT analysis should ideally have wide cross-linguistic support and be grounded in phonetic facts of speech production, perception, or processing. In phonetically-based OT (Gordon 2007, Hayes 1999, Hayes and Steriade 2004), phonological analyses make use of ranked and violable constraints but incorporate more phonetic detail than is usually included in conventional OT or traditional generative accounts. The analyses described in the preceding section are examples combining OT constraints with perceptual (Section 3.1) and articulatory (Section 3.2) aspects of phonetic
detail. Another example of phonetically-based OT is Steriade’s (1997) use of licensing by cue, in which constraint hierarchies on phonological features are based not on syllable structure but instead on the availability of perceptual cues across different phonetic contexts. Both phonetically-based OT and LabPhon share a greater emphasis on phonetic detail, but the use of LabPhon methodologies does not require an OT analysis to be phonetically-based. For example, Gerfen (2001) uses acoustic data on obstruent neutralization in East Andalusian Spanish to support an OT analysis that invokes syllable structure instead of direct reference to phonetic cues. On the other hand, the use of experimental data by OT practitioners is sometimes viewed with skepticism by laboratory phonologists (see Morrison’s 2005 and Romero’s 2006 reviews of Hayes, Kirchner, and Steriade 2004 and of Face 2004, respectively, in which several phonetically-based OT analyses are supported with data and insights from experimental investigation). However, the combination of OT formalism and experimental methodology is inevitable and, in any event, necessary to bridge the gap that has traditionally existed between theoretical and empirical approaches to phonology. As Cohn (2010: 11) points out, “the central goals of better dialog across boundaries, better integration of methodology, better collaboration have remained the hallmarks of LabPhon.” Colina (2008: 444) argues that “experimental, quantitative and variationist studies need to formalize the results of their research … and propose grammars that generate the variable patterns described, as well as their interaction with non-variable patterns.”

Short Biography

Travis G. Bradley is an Associate Professor in the Department of Spanish and Portuguese at the University of California, Davis. His primary research interests are phonological theory, Judeo-Spanish linguistics, phonetic and phonological variation in Ibero-Romance and other languages, and historical Romance phonology. Other interests are second-language acquisition and technology-enhanced language learning. His research publications include articles in Probus, Língua, Estudios de fonética experimental, Studies in Hispanic and Lusophone Linguistics, Southwest Journal of Linguistics, Linguag(e)m, and the Journal of Educational Computing Research. He has contributed to edited volumes such as Fonética y fonología descriptivas de la lengua española, Optimality-Theoretic Studies in Spanish Phonology, Historical Romance Linguistics: Retrospective and Perspectives, Laboratory Approaches to Spanish Phonology, Experimental and Theoretical Approaches to Romance Linguistics, and Romance Linguistics 2007. Along with Rafael Núñez Cedeño and Sonia Colina, he co-edited Fonología generativa contemporánea de la lengua española (2a edición, Georgetown University Press, 2014).

Notes

* Correspondence to: Travis G. Bradley, Department of Spanish and Portuguese, University of California, One Shields Avenue, Davis, CA 95616, USA. Email: tgbradley@ucdavis.edu

1 There is some evidence that in Spanish the fricative /θ/ belongs to the same sonority level as stops, given their behavior with respect to complex onset formation (see Martínez-Gil 2001).

2 In tableau (8), a candidate such as kra.ʃj(o) would be ruled out by a high-ranking constraint not shown here, requiring a maximal sonority distance between the members of an onset cluster (see Colina 2006c: 183, 2009b: 27–28).

3 Since faithfulness and alignment are not crucially ranked with respect to each other, their constraint columns are separated by a broken line instead of a solid one.

This proposal differs from Hall (2003: 28–30), who posits a hierarchy of constraints penalizing the overlap of different types of consonant gestures by a tautosyllabic vowel gesture.

The consonant gestures of the complex onset are shown as solid lines, while dotted lines represent the vowel gesture on which the consonant gestures are superimposed.

Works Cited

Prosody and Syllable Structure

Segmental Phonology

Morphology–Phonology Interface

Phonological Variation and Sound Change

Acquisition of First-language Phonology

Additional Works Cited

© 2014 The Author
Language and Linguistics Compass © 2014 John Wiley & Sons Ltd

Optimality Theory and Spanish Phonology 81

Further Reading on OT in Spanish Phonology

Prosody and Syllable Structure

Segmental Phonology

Face, Timothy L. 2002. Re-examining Spanish “resyllabification”. Current issues in Romance languages: selected papers from the 29th Linguistic Symposium on Romance Languages (LSRL), ed. by Teresa Satterfield, Christina Tortora and Diana Cresti, 81–94. Amsterdam: John Benjamins.

Wilshire, Caroline. 2002. Variation in Spanish aspiration and prosodic boundary constraints. Current issues in Romance languages: selected papers from the 29th Linguistic Symposium on Romance Languages (LSRL), ed. by Teresa Satterfield, Christina Tortora and Diana Cresti, 375–89. Amsterdam: John Benjamins.

Morphology–Phonology Interface

Elman, Minta and D. Eric Holt. 2009. When small words collide: morphological reduction and phonological compensation in Old Leonese contractions. Little words: their history, phonology, syntax, semantics, pragmatics, and acquisition, ed. by

Phonological Variation and Sound Change

Acquisition of First-language Phonology